Cited by

  1. Kurotani, Atsushi, Miyamoto, Hirokuni, & Kikuchi, Jun. Validation Of Causal Inference Data Using DirectLiNGAM In An Environmental Small-Scale Model And Calculation Settings. MethodsX 12 (2024).
  2. Krause, Andrew L., Gaffney, Eamonn A., Jewell, Thomas Jun, Klika, Václav, & Walker, Benjamin J.. Turing Instabilities Are Not Enough To Ensure Pattern Formation. Bulletin Of Mathematical Biology 86 (2024).
  3. Sánchez-Pinillos, Martina, Dakos, Vasilis, & Kéfi, Sonia. Ecological Dynamic Regimes: A Key Concept For Assessing Ecological Resilience. Biological Conservation 289 (2024).
  4. Ishii, Chitose et al. Computational Estimation Of Sediment Symbiotic Bacterial Structures Of Seagrasses Overgrowing Downstream Of Onshore Aquaculture. Environmental Research 219 (2023).
  5. Abe, Masato S. et al. Alternative Stable States, Nonlinear Behavior, And Predictability Of Microbiome Dynamics. Microbiome 11 (2023).
  6. Etoh, Tetsuji et al. Estimation Of Silent Phenotypes Of Calf Antibiotic Dysbiosis. Scientific Reports 13 (2023).
  7. Kikuchi, Jun, & Miyamoto, Hirokuni. An Evaluation Of Homeostatic Plasticity For Ecosystems Using An Analytical Data Science Approach. Computational And Structural Biotechnology Journal 21 (2023).
  8. Roy, Mousumi et al. Model-free Prediction Of Multistability Using Echo State Network. Chaos: An Interdisciplinary Journal Of Nonlinear Science 32 (2022).
  9. Dakos, Vasilis, & Kéfi, Sonia. Ecological Resilience: What To Measure And How. Environmental Research Letters 17 (2022).
  10. Miyamoto, Hirokuni et al. A Potential Network Structure Of Symbiotic Bacteria Involved In Carbon And Nitrogen Metabolism Of Wood-Utilizing Insect Larvae. Science Of The Total Environment 836 (2022).

and 6 more articles.

Data collection is conducted using the OpenCitations platform.